首页 > 博士后招聘
| 事业单位 | 教师招聘 | 医院招聘 | 博士后招聘 | 招聘会 | 校园招聘 | 银行招聘 | 实习生 | 公立医院招聘 | 民营医院招聘 | 护士招聘 | 护士资格证 | 医师资格证 | 考试真题 | 医院大全 | 资讯 | 北京招聘 |

卡塔尔哈马德・本・哈利法大学2025年招聘博士后(AI驱动的油藏模拟与优化)

时间:2025-02-05 12:08:35  公招网(www.gongzhao.com)
  博士后招聘

卡塔尔哈马德・本・哈利法大学2025年招聘博士后(AI驱动的油藏模拟与优化)

哈马德・本・哈利法大学(阿拉伯文:جامعة حمد بن خليفة,英文:Hamad Bin Khalifa University)成立于2010年,是一所位于卡塔尔教育城的公立大学。

Postdoctoral Research Fellow in AI-Driven Reservoir Simulation and Optimization

College of Science and Engineering, Hamad Bin Khalifa University

Application Deadline Deadline:

01 April 2025Job Salary £75,000 to £82,000 Annual and tax-freeContact Name Contact:

Dr. Ahmad Abushaikha

Hamad Bin Khalifa University (HBKU) invites applications for a Postdoctoral Research Fellow position to join a groundbreaking project focusing on the application of advanced machine learning (ML), artificial intelligence (AI), and large language models (LLMs) to revolutionize subsurface resource characterization, reservoir behavior simulation, and future production forecasting in Qatar's oil and gas sector.

Key Responsibilities

1. Machine Learning Framework Development

Design, develop, and implement ML models for reservoir characterization:

Integrate static (e.g., geological data) and dynamic (e.g., production and well data) inputs to predict key reservoir properties such as permeability, porosity, and fault structures.

Conduct feature engineering to identify and extract relevant relationships between reservoir variables.

Optimize model training processes using advanced ML libraries (e.g., TensorFlow, PyTorch) and GPU acceleration.

Apply uncertainty quantification techniques, such as Monte Carlo simulations, to validate model reliability.

2- Artificial Intelligence and Reinforcement Learning:

Implement reinforcement learning (RL) techniques for dynamic history matching and model refinement.

Develop reward systems and optimization frameworks to improve reservoir simulation accuracy.

Conduct iterative testing and refinement of RL models based on real-world datasets.

Qualifications

Essential:

A Ph.D. in Petroleum Engineering, Computational Science, Data Science, or a related field.

Strong expertise in machine learning frameworks such as TensorFlow, PyTorch, or equivalent.

Experience with reinforcement learning methodologies and applications in real-world scenarios.

Proven track record of scientific publications in reputable journals.

Proficiency in programming languages such as Python, C++, or MATLAB.

Familiarity with high-performance computing environments and parallel programming.

Desirable:

Background in reservoir simulation and modeling.

Experience working with industry-standard tools like Schlumberger’s Intersect or Eclipse.

Knowledge of subsurface data analysis, including seismic and well log interpretation.

Expertise in uncertainty quantification and risk analysis techniques.

Experience in developing and applying LLMs for engineering applications.

Strong interpersonal and communication skills for collaborative research and mentoring.

Duration: Full-Time, Three years.

Benefits

Competitive salary commensurate with experience.

Access to state-of-the-art computational facilities.

Opportunities for professional development through collaborations with leading academic and industrial partners.

公招网微信公众号
扫码请关注公招网微信公众号

上一篇:荷兰皇家海洋研究所(NIOZ)2025年招聘博士后职位(浮游植物生产力)
下一篇:智利千禧智能医疗工程研究所2025年招聘博士后(医学影像与人工智能)
无相关信息
  • 美国匹兹堡大学2025年招聘博士后职位(精神病学)
  • 美国贝勒医学院2025年招聘博士后职位(癌症流行病学
  • 美国纽约州立大学州立健康科学大学2025年招聘博士
  • 德国哥德堡大学2025年招聘博士后(肿瘤免疫方向)
  • 意大利人类技术中心(HT)2025年招聘博士后(神经生物学
  • 英国利物浦大学2025年招聘博士后(功能性界面的拉曼
  • 英国伦敦大学学院2025年招聘博士后(图像分析/机器
  • 丹麦奥胡斯大学2025年招聘博士后(人类宏观生态学)
  • 美国福克斯谷研究所2025年招聘博士后(心理学)
  • 德国汉堡大学2025年招聘博士后(气候变化下的功能性